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Abstract 

This paper delves into the intricate structure of curvature tensors within the realm of Finsler geometry. By 

harnessing the power of higher-order Cartan derivatives, we introduce a novel decomposition scheme for 

curvature tensors. This innovative approach not only provides deeper insights into the geometric properties 

of Finsler spaces but also establishes a foundational framework for further investigations. Our findings reveal 

that the proposed decomposition is instrumental in unraveling the connections between curvature, torsion, 

and the underlying metric structure. Moreover, we demonstrate the applicability of our results to various 

subdomains of Finsler geometry, including Finsler information geometry and Finsler cosmology. 

Keywords: Finsler space, Cartan’s covariant derivative expansion, Curvature tensor, Identities, Geometric 

properties. 
 

1. Introduction 

Finsler geometry, as a generalization of Riemannian 

geometry, offers a flexible framework for modeling 

diverse physical phenomena characterized by anisotropic 

and position-dependent metrics. Central to the study of 

Finsler geometry are curvature tensors, which 

encapsulate the intrinsic curvature properties of the 

underlying space. While significant progress has been 

made in understanding curvature tensors in Riemannian 

geometry, their counterparts in Finsler geometry exhibit 

a richer and more complex structure. Traditional 

approaches to analyzing curvature tensors in Finsler 

geometry often rely on the concept of Cartan connection. 

However, these methods can become cumbersome when 

dealing with higher-order geometric quantities. In this 

paper, we propose a novel approach that leverages the 

power of higher-order Cartan derivatives to 

systematically decompose curvature tensors. 

This decomposition not only simplifies the analysis of 

curvature but also reveals new connections between 

curvature, torsion, and the metric structure. 

The study of curvature tensors and recurrent structures in 

Finsler geometry and relativistic space-times has 

attracted considerable attention due to its significance in 

both mathematical theory and physical applications. The 

foundational work by [23] laid the groundwork for 

modern developments in Finsler geometry, introducing 

essential geometric structures and curvature concepts. 

Subsequent efforts have focused on the refinement and 

generalization of curvature tensors. Notably, [2] and [3] 

investigated the properties of the w-curvature tensor and 

its implications in relativistic contexts. [1] extended this 

line of inquiry by analyzing the w*-curvature tensor on 

relativistic space-times, offering new insights into its 

geometric and physical interpretations. 

In the context of Finsler geometry, a substantial body of 

work has been contributed by Al-Qashbari and 

collaborators. Their investigations have spanned a wide 

range of topics, including M-projective curvature tensors 

[4], higher-order generalized recurrent structures [6], [7], 

and the decomposition of generalized curvature tensors 

[5] and [9]. These studies have made significant strides 

in classifying and understanding complex recurrent 

phenomena in Finsler manifolds through the use of 

Cartan and Berwald derivatives. 
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Further contributions have examined special curvature 

structures such as the conharmonic, Weyl, and R-

projective tensors, particularly in relation to their 

behavior under various covariant and Lie derivatives 

[10], [11], [12], [13], [14], [15], [17] and [18]. These 

efforts have helped elucidate the deeper algebraic and 

differential properties of curvature tensors in generalized 

fifth recurrent Finsler spaces (GBK-5RFn), as well as 

their role in broader geometric frameworks. 

The work of [20] and [21], has further contextualized the 

behavior of higher-order recurrent Finsler spaces, 

emphasizing the role of Berwald-type structures and 

systematizing various special cases of interest. Similarly, 

the investigations by [22] into generalized H-recurrent 

spaces have provided a comparative foundation for the 

study of trirecurrent and BK-recurrent geometries, as 

also explored in later works [16], and [19]. 

Collectively, these studies demonstrate a growing 

research interest in extending classical geometric 

concepts through higher-order and generalized structures 

in Finsler spaces. The present work builds upon this 

foundation by further analyzing [insert specific topic of 

your paper here, e.g., concircular motions using Cartan’s 

fourth curvature tensor in the Berwald sense], thereby 

contributing new insights into the ongoing development 

of Finsler geometry and its recurrent frameworks. 

Two vectors 𝑦𝑖  and  𝑦𝑖  meet the following conditions 

a) 𝑦𝑖 = 𝑔𝑖𝑗 𝑦
𝑗  , 

b) 𝑦𝑖  𝑦𝑖 = 𝐹2  , 

c) 𝛿𝑗
𝑘𝑦𝑗 = 𝑦𝑘 , 

d) 𝑔𝑖𝑟 𝛿𝑗
𝑖 = 𝑔𝑟𝑗   , 

e)  𝑔𝑗𝑘𝛿𝑘
𝑖 =𝑔𝑗𝑖    , 

f)  �̇�𝑗 𝑦
𝑗=1    and 

g) �̇�𝑘  𝑦𝑗=𝑔𝑗𝑘  .                                               (1.1) 

The quantities 𝑔𝑖𝑗 and 𝑔𝑖𝑗  are covariant constant with 

respect to h-covariant derivative by 

a)  𝑔𝑖𝑗  𝑔𝑗𝑘 = 𝛿𝑖
𝑘 =  { 

1   ,      𝑖𝑓      𝑖 = 𝑘       ,
0   ,      𝑖𝑓      𝑖 ≠ 𝑘       .

 

b)  𝑔𝑗𝑘
ℎ׀

= 0    and 

c) 𝑔𝑖𝑗׀ℎ 
= 0  .                                               (1.2) 

Tensor  𝐶𝑖𝑗𝑘 is known as (h)hv-torsion tensor defined by 

𝐶𝑖𝑗𝑘 =
1

2
�̇�𝑖  𝑔𝑗𝑘 =

1

4
�̇�𝑖�̇�𝑗�̇�𝑘 𝐹2  ,                                         (1.3) 

The (v)hv-torsion tensor  𝐶𝑖𝑘  
ℎ and tensor 𝐶𝑖𝑗𝑘 are given by 

a) 𝐶𝑗𝑘 
𝑖 𝑦𝑗 = 𝐶𝑗𝑘

𝑖 𝑦𝑘 = 0   , 

b) 𝐶𝑖𝑗𝑘 𝑦
𝑖 = 𝐶𝑖𝑗𝑘 𝑦

𝑗 = 𝐶𝑖𝑗𝑘 𝑦
𝑘 = 0  . 

c) 𝑔𝑗𝑘𝐶𝑖𝑗𝑘 = 𝐶𝑖         and 

d)  𝑔𝑗𝑘𝐶𝑖𝑗ℎ = 𝐶𝑖ℎ
𝑘  .                                          (1.4) 

The vector 𝑦𝑖  and metric function 𝐹 are vanished 

identically for Cartan’s covariant derivative. 

a) 𝐹׀ℎ = 0     and 

b) 𝑦𝑖
ℎ׀

= 0  .                                                   (1.5) 

Cartan [7] deduced the covariant derivatives of an 

arbitrary vector field 𝑋𝑖 with respect to 𝑥𝑘 which given 

by 

𝑋𝑖│𝑘 = �̇�𝑘𝑋𝑖  +  𝑋𝑟 𝐶 𝑟𝑘 
 𝑖   .                                (1.6) 

and 

𝑋|𝑘
𝑖 = 𝜕𝑘 𝑋𝑖 − (�̇�𝑟 𝑋𝑖) 𝐺 𝑘

 𝑟 + 𝑋𝑟Γ 𝑟𝑘
∗ 𝑖  ,                 (1.7) 

where the function Γ𝑟𝑘  
∗ 𝑖  is defined by 

 Γ 𝑟𝑘
 ∗𝑖 = Γ 𝑟𝑘

 𝑖  − 𝐶 𝑚𝑟 
 𝑖 Γ 𝑠𝑘

 𝑚 𝑦𝑠 .  

The functions Γ 𝑟𝑘
 ∗𝑖  and 𝐺𝑘

𝑟 are connected by  

 𝐺 𝑘
 𝑟 = Γ 𝑠𝑘

 ∗𝑟 𝑦𝑠  , where   𝜕𝑗 =
𝜕

𝜕𝑥𝑗  , 

   �̇�𝑗 =
𝜕

𝜕𝑦𝑗  ,   𝐺𝑗
𝑖 =  �̇�𝑗𝐺𝑖 . 

In the context of Finsler geometry, equations (1.6) and 

(1.7) define two distinct forms of covariant 

differentiation: the v-covariant differentiation, also 

referred to as Cartan's first kind covariant derivative, and 

the h-covariant differentiation, known as Cartan's second 

kind covariant derivative. Accordingly, the notations  

𝑋𝑖|𝑘 and  𝑋|𝑘  
𝑖  represent the v-covariant and h-covariant 

derivatives of a vector field 𝑋𝑖, respectively. 

In this study, we present a rigorous mathematical 

exposition of key tensorial structures, namely the 

generalized curvature tensor 𝑊𝑗𝑘ℎ
𝑖  , the torsion tensor 

𝑊𝑗𝑘
𝑖  , and the deviation tensor 𝑊𝑗

𝑖. These tensors play a 

fundamental role in differential geometry and theoretical 

physics, especially in the characterization of the 

curvature and torsional behavior of differentiable 

manifolds. 

Precise definitions of these tensors are given as follows: 

       𝑊𝑗𝑘ℎ
𝑖 =  𝐻𝑗𝑘ℎ

𝑖 +
2 𝛿𝑗

𝑖

(𝑛+1)
𝐻[ℎ𝑘] +

2 𝑦𝑖

(𝑛+1)
�̇�𝑗𝐻[𝑘ℎ] 

       + 
𝛿𝑘

𝑖

(𝑛2−1)
(𝑛 𝐻𝑗ℎ + 𝐻ℎ𝑗 + 𝑦𝑟�̇�𝑗𝐻ℎ𝑟) 

−
𝛿ℎ

𝑖

(𝑛2−1)
(𝑛 𝐻𝑗𝑘 + 𝐻𝑘𝑗 + 𝑦𝑟�̇�𝑗𝐻𝑘𝑟)   ,         (1.8) 

       𝑊𝑗𝑘
𝑖 =  𝐻𝑗𝑘

𝑖 +
𝑦𝑖

(𝑛+1)
𝐻[𝑗𝑘] 

 +2 { 
𝛿[ 𝑗

𝑖

(𝑛2−1)
(𝑛 𝐻𝑘] − 𝑦𝑟𝐻𝑘] 𝑟) }  and                      (1.9) 
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𝑊𝑗
𝑖 =  𝐻𝑗

𝑖 − 𝐻 𝛿𝑗
𝑖 −

1

(𝑛+1)
( �̇�𝑟𝐻𝑗

𝑟 − �̇�𝑗𝐻) 𝑦𝑖  ,     

respectively.                                                           (1.10) 

These tensors satisfy the following intrinsic identities: 

a) 𝑊𝑗𝑘ℎ
𝑖  𝑦𝑗 = 𝑊𝑘ℎ

𝑖    , 

b) 𝑊𝑘ℎ
𝑖  𝑦𝑘 = 𝑊ℎ

𝑖   , 

c) 𝑊𝑗𝑘𝑖 
𝑖 = 𝑊𝑗𝑘

   , 

d) 𝑔𝑖𝑟 𝑊𝑗𝑘ℎ
𝑖 = 𝑊𝑟𝑗𝑘ℎ

   , 

e) 𝑊𝑗𝑘ℎ
𝑖 = − 𝑊𝑗ℎ𝑘

𝑖     and 

f) 𝑊𝑗𝑘ℎ
𝑖 + 𝑊𝑘ℎ𝑗

𝑖 +  𝑊ℎ𝑗𝑘
𝑖 = 0 .                      (1.11) 

Additionally, under specific conditions, the deviation 

tensor 𝑊𝑗
𝑖  satisfies: 

a) 𝑊𝑘
𝑖  𝑦𝑘 = 0   , 

b) 𝑊𝑖
𝑖 = 0    , 

c) 𝑔𝑖𝑟 𝑊𝑗
𝑖 = 𝑊𝑟𝑗 

    , 

d)   𝑔𝑗𝑘𝑊𝑗𝑘
 = 𝑊     and 

e) 𝑊𝑗𝑘
  𝑦𝑘 = 0  .                                            (1.12) 

Notably, the tensor Wjkh
i  is skew-symmetric with respect 

to the indices k and h. The discussion is further extended 

to Cartan’s third curvature tensor  𝑅𝑗𝑘ℎ
𝑖  , the Ricci tensor 

 𝑅𝑗𝑘  , the curvature vector 𝐻𝑘, and the scalar curvature 

𝐻 . These entities are central in the geometric 

interpretation of manifold curvature. Through their 

analytical interrelations and algebraic properties, this 

work contributes to a deeper understanding of geometric 

structures in differential geometry and their implications 

in physical theories. 

a) 𝑅𝑗𝑘ℎ
𝑖 = Γℎ𝑗𝑘

∗𝑖 + (Γ𝑙𝑗𝑘
∗𝑖  ) 𝐺ℎ

𝑙 + 𝐶𝑗𝑚
𝑖 ( 𝐺𝑘ℎ

𝑚 −

𝐺𝑘𝑙
𝑚  𝐺ℎ

𝑙  ) + Γ𝑚𝑘 
∗𝑖 Γ𝑗ℎ

∗𝑚 − 𝑘/ℎ    , 

b) 𝑅𝑗𝑘ℎ 
𝑖 𝑦𝑗 = 𝐻𝑘ℎ

𝑖      , 

c) 𝑅𝑗𝑘 𝑦
𝑗 = 𝐻𝑘   , 

d) 𝑅𝑗𝑘 𝑦𝑘 = 𝑅𝑗      , 

e) 𝑅𝑖
𝑖 = 𝑅 , 

f) 𝑔𝑖𝑟 𝑅𝑗𝑘ℎ
𝑖 = 𝑅𝑟𝑗𝑘ℎ

   , 

g) 𝑅𝑗𝑘ℎ
𝑖 = − 𝑅𝑗ℎ𝑘

𝑖   , 

h) h)   𝑔𝑗𝑘𝑅𝑗𝑘ℎ
𝑖 = 𝑅ℎ

𝑖    , 

i) 𝑅𝑗𝑘𝑖
𝑖 = 𝑅𝑗𝑘  , 

j)  𝐻𝑖 𝑦
𝑖 = 𝐻𝑖

𝑖 = (𝑛 − 1) 𝐻     , 

k)  𝐻𝑘ℎ 
𝑖 𝑦𝑘 = 𝐻ℎ

𝑖      and 

l)  𝐻𝑘𝑖 
𝑖 = 𝐻𝑘

   .                                             (1.13) 

Cartan’s covariant derivative, when applied to 

the tensors 𝑅𝑗𝑘 and 𝛿ℎ
𝑘 , yields the following 

relations: 

a)  𝑅𝑗𝑘|𝑚 = 𝜆𝑚𝑅𝑗𝑘    and 

b) 𝛿ℎ|𝑚
𝑘 = 0 .                                                 (1.14) 

Additionally, the covariant derivative with respect to |𝑚 

satisfies: 

a) (𝛿ℎ
𝑘 𝑅𝑖𝑗)|𝑚 = 𝜆𝑚𝛿ℎ

𝑘 𝑅𝑖𝑗       , 

b) (𝑔𝑖𝑗  𝑅ℎ
𝑘)|𝑚  = 𝜆𝑚 𝑔𝑖𝑗  𝑅ℎ

𝑘  , 

c) (𝑅𝛿𝑘
ℎ𝑔𝑖𝑗)

|𝑚
= 𝜆𝑚 𝑅 𝛿𝑘

ℎ𝑔𝑖𝑗     and 

d) (𝑅𝑅𝑖𝑗)
|𝑚

= 𝜆𝑚𝑅𝑅𝑖𝑗  .                              (1.15) 

Moreover, Cartan’s covariant derivatives of the tensor 

fields 𝑇𝑖𝑗𝑘
ℎ  , 𝑇𝑖𝑗

ℎ   and  𝑇𝑖
ℎ with respect to 𝑥𝑚 are given by: 

a) 𝑇𝑗𝑘ℎ|𝑚
𝑖 = 𝜆𝑚𝑇𝑗𝑘ℎ

𝑖   , 

b) 𝑇𝑗𝑘|𝑚
𝑖 = 𝜆𝑚𝑇𝑗𝑘

𝑖       and 

c) 𝑇𝑗|𝑚
𝑖 = 𝜆𝑚𝑇𝑗

𝑖   .                                          (1.16) 

The structure of the present work is organized as follows. 

After the introductory Section 1, which includes 

foundational concepts and notations, Section 2 explores 

the algebraic and geometric relations between the Weyl 

projective curvature tensor and several other curvature 

tensors. Section 3 is devoted to the expansion of Cartan’s 

covariant derivative applied to general curvature tensors. 

Finally, Section 4 investigates a set of tensorial identities 

derived in Section 2 using the expansions developed 

earlier. 

2. Preliminaries 

In Finsler geometry, a central theme is the complex 

interplay between various types of curvature tensors. 

These interrelations are frequently captured through 

concise and elegant mathematical identities. This paper 

emphasizes the study of the structural connections 

between the Weyl projective curvature tensor and other 

fundamental curvature tensors, aiming to shed light on 

their underlying geometric significance. 

2.1. The Riemanniian Curvature Tensor 𝑹𝒋𝒌𝒉
𝒊  

The Riemann curvature tensor is a central construct in 

differential geometry, serving as a measure of the 

intrinsic curvature of a Riemannian manifold. It 

quantifies how the manifold's geometry deviates locally 

from that of flat Euclidean space, making it a vital 

invariant in understanding geometric structures. More 

precisely, the Riemann tensor captures the non-

commutativity of second-order covariant derivatives and 
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thus encapsulates the failure of local flatness in curved 

spaces. 

A Riemannian manifold is said to be flat if and only if its 

Riemann curvature tensor vanishes identically, implying 

that the manifold is locally isometric to Euclidean space. 

Importantly, this tensor is not limited to Riemannian 

geometry alone; it extends naturally to pseudo-

Riemannian manifolds and more generally to manifolds 

endowed with an affine connection. 

In the broader scope of mathematical physics, the 

Riemann curvature tensor plays a foundational role in the 

general theory of relativity, where it describes the 

curvature of spacetime resulting from mass-energy 

distributions. Its components are directly involved in the 

formulation of Einstein's field equations. 

Closely associated with the Riemann curvature tensor is 

the Weyl projective curvature tensor, which generalizes 

the notion of projective and conharmonic curvature 

tensors. 

Definition 2.1. Weyl projective curvature tensor in terms 

of Riemannian curvature tensor 𝑅𝑗𝑘ℎ
𝑖  is defined as [12] 

and [21]. 

𝑊𝑗𝑘ℎ
𝑖 = 𝑅𝑗𝑘ℎ

𝑖 +
1

(𝑛−1)
(𝛿𝑘

𝑖 𝑅𝑗ℎ − 𝑅ℎ
𝑖 𝑔𝑗𝑘)  .            (2.1) 

In (𝑉4, 𝐹), we have 

𝑅𝑗𝑘ℎ
𝑖 = 𝑊𝑗𝑘ℎ

𝑖 −
1

3
(𝛿𝑘

𝑖 𝑅𝑗ℎ − 𝑅ℎ
𝑖 𝑔𝑗𝑘)  .                  (2.2) 

2.2. Projective Curvature Tensor  �̅̅̅�𝒋𝒌𝒉
𝒊  

The �̅�-projective curvature tensor is a geometric object 

of significant interest in differential geometry. It has been 

investigated in various geometric contexts, including 

Riemannian geometry, Kähler geometry, and 

cosmology, due to its ability to reveal subtle geometric 

and physical properties. 

Furthermore, the concept of an M-projective curvature 

tensor was introduced by Pokhariyal and Mishra (1970), 

providing a more generalized framework for curvature 

analysis in Riemannian and related geometries. The 

definition and properties of this tensor have been 

explored extensively and will be discussed in the 

following sections of this work. 

       �̅�(𝑋, 𝑌, 𝑍, 𝑇) = �̅�(𝑋, 𝑌, 𝑍, 𝑇) 

       −
1

2(𝑛−1)
[𝑆(𝑌, 𝑍)𝑔(𝑋, 𝑇) − 𝑆(𝑋, 𝑍)𝑔(𝑌, 𝑇) 

+ 𝑔(𝑌, 𝑍)𝑆(𝑋, 𝑇) − 𝑔(𝑋, 𝑇)𝑆(𝑌, 𝑍)] .          (2.3) 

Where:  �̅�(𝑋, 𝑌, 𝑍, 𝑇) = 𝑔(𝑊(𝑋, 𝑌)𝑍, 𝑇)   and   

�̅�(𝑋, 𝑌, 𝑍, 𝑇) = 𝑔(𝑅(𝑋, 𝑌)𝑍, 𝑇)  .                             (2.4) 

R is the Riemann curvature tensor, S is the Ricci tensor, 

g is the metric tensor, n is the dimension of the manifold. 

The �̅�-projective curvature tensor has a number of 

interesting properties. For example, it is invariant under 

conformal transformations. This means that it is the same 

for two metrics that are conformally equivalent. The �̅�-

projective curvature tensor also vanishes if and only if 

the manifold is Ricci-flat. 

The �̅�-projective curvature tensor has been used to study 

a variety of geometric problems. For example, it has been 

used to classify Riemannian manifolds, to study the 

geometry of Kähler manifolds, and to develop new 

models of gravity. 

The local coordinates expression of equation (2.3) as 

follows 

�̅�𝑙𝑗𝑘ℎ = 𝑅𝑙𝑗𝑘ℎ −
1

2(𝑛−1)
[𝑅𝑗𝑘𝑔𝑙ℎ − 𝑅𝑙𝑘𝑔𝑗ℎ + 𝑔𝑗𝑘𝑅𝑙ℎ −

𝑔𝑙𝑘𝑅𝑗ℎ] .                                      (2.5) 

Assuming 𝑛 = 4 and using (2.2) in equation (2.5) and 

contracting with 𝑔𝑙𝑖 , the M-projective curvature tensor is 

given by 

       �̅�𝑗𝑘ℎ
𝑖 = 𝑊𝑗𝑘ℎ

𝑖  

       −
1

6
(𝛿ℎ

𝑖 𝑅𝑗𝑘 + 𝛿𝑘
𝑖 𝑅𝑗ℎ − 𝑔𝑗𝑘𝑅ℎ

𝑖 − 𝑔𝑗ℎ𝑅𝑘
𝑖 ) .           (2.6) 

2.3. Conformal Curvature Tensor  𝑪𝒋𝒌𝒉
𝒊  

The conformal curvature tensor, also known as the Weyl 

conformal curvature tensor, is a geometric object 

introduced in differential geometry. It is a measure of the 

curvature of spacetime or, more generally, a pseudo-

Riemannian manifold. Like the Riemann curvature 

tensor, the Weyl tensor expresses the tidal force that a 

body feels when moving along a geodesic. The Weyl 

tensor differs from the Riemann curvature tensor in that 

it does not convey information on how the volume of the 

body changes, but rather only how the shape of the body 

is distorted by the tidal force. 

Definition 2.2. The Conformal curvature tensor 𝐶𝑖𝑗𝑘
ℎ  

expressed as follows 

       𝐶𝑗𝑘ℎ
𝑖 = 𝑅𝑗𝑘ℎ

𝑖 −
1

2
(𝛿𝑘

𝑖 𝑅𝑗ℎ − 𝛿ℎ
𝑖 𝑅𝑗𝑘 + 𝑅𝑘

𝑖 𝑔𝑗ℎ − 𝑅ℎ
𝑖 𝑔𝑗𝑘) 

           −
1

6
𝑅(𝛿ℎ

𝑖 𝑔𝑗𝑘 − 𝛿𝑘
𝑖 𝑔𝑗ℎ) .                                (2.7a) 

Using (2.2) in equation (2.7a), we get 

       𝐶𝑗𝑘ℎ
𝑖 = 𝑊𝑗𝑘ℎ

𝑖 −
5

6
(𝛿𝑘

𝑖 𝑅𝑗ℎ − 𝑅ℎ
𝑖 𝑔𝑗𝑘) 

       −
1

6
𝑅(𝛿ℎ

𝑖 𝑔𝑗𝑘 − 𝛿𝑘
𝑖 𝑔𝑗ℎ) +

1

2
(𝛿ℎ

𝑖 𝑅𝑗𝑘 − 𝑅𝑘
𝑖 𝑔𝑗ℎ) . (2.7b) 

2.4. Conharmonic Curvature Tensor  𝑳𝒋𝒌𝒉
𝒊  

The conharmonic curvature tensor is a geometric object 

introduced in differential geometry. It generalizes the 

projective curvature tensor and the conformal curvature 

tensor. It has been studied in a variety of contexts, 
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including Riemannian geometry, Kähler geometry, and 

cosmology. 

Definition 2.3. For 𝑉4 the Conharmonic curvature tensor 

𝐿𝑗𝑘ℎ
𝑖  defined as [10] and [18] 

       𝐿𝑗𝑘ℎ
𝑖 = 𝑅𝑗𝑘ℎ

𝑖  

       −
1

2
(𝑔𝑗𝑘𝑅ℎ

𝑖 + 𝛿ℎ
𝑖 𝑅𝑗𝑘 − 𝛿𝑘

𝑖 𝑅𝑗ℎ − 𝑔𝑗ℎ𝑅𝑘
𝑖 )  .        (2.8a) 

Using (2.2) in equation (2.8a), we get 

       𝐿𝑗𝑘ℎ
𝑖 = 𝑊𝑗𝑘ℎ

𝑖 +
1

6
(𝛿𝑘

𝑖 𝑅𝑗ℎ − 𝑅ℎ
𝑖 𝑔𝑗𝑘) 

       − 
1

2
(𝛿ℎ

𝑖 𝑅𝑗𝑘 − 𝑅𝑘
𝑖 𝑔𝑗ℎ) .                                     (2.8b) 

2.5. Concircular Curvature Tensor 𝑴𝒋𝒌𝒉
𝒊  

The concircular curvature tensor is a geometric object 

introduced in differential geometry. It is a measure of the 

curvature of spacetime or, more generally, a pseudo-

Riemannian manifold. It is closely related to the 

conformal curvature tensor (also known as the Weyl 

curvature tensor) and the projective curvature tensor. The 

concircular curvature tensor vanishes if and only if the 

manifold is concircularly flat. 

Definition 2.4. The Concircular curvature tensor  𝑀ℎ𝑖𝑗𝑘, 

for 𝑉4 is defined as [3] 

       𝑀𝑗𝑘ℎ
𝑖 = 𝑅𝑗𝑘ℎ

𝑖 −
1

12
𝑅(𝑔𝑗𝑘𝛿ℎ

𝑖 − 𝑔𝑗ℎ𝛿𝑘
𝑖 ) .               (2.9) 

Using (2.2) in equation (2.9), we get 

       𝑀𝑗𝑘ℎ
𝑖 = 𝑊𝑗𝑘ℎ

𝑖 −
1

12
𝑅(𝑔𝑗𝑘𝛿ℎ

𝑖 − 𝑔𝑗ℎ𝛿𝑘
𝑖 ) 

           −
1

6
(𝛿𝑘

𝑖 𝑅𝑗ℎ − 𝑅ℎ
𝑖 𝑔𝑗𝑘).                                   (2.10) 

2.6. 𝑷𝟏-Curvature Tensor 

The P1-curvature tensor is a geometric object introduced 

in differential geometry. It is a measure of the curvature 

of spacetime or, more generally, a pseudo-Riemannian 

manifold. It is closely related to the Ricci curvature 

tensor and the scalar curvature. The P1-curvature tensor 

vanishes if and only if the manifold is Ricci-flat and has 

constant scalar curvature. The tensor 𝑃1(𝑋, 𝑌, 𝑍, 𝑇) has 

been defined as 

       𝑃1(𝑋, 𝑌, 𝑍, 𝑇) = 𝑅(𝑋, 𝑌, 𝑍, 𝑇) 

       +
1

2(𝑛−1)
[𝑔(𝑌, 𝑍)𝑅𝑖𝑐(𝑋, 𝑇) − 𝑔(𝑌, 𝑇)𝑅𝑖𝑐(𝑋, 𝑍) 

      −𝑔(𝑋, 𝑍)𝑅𝑖𝑐(𝑌, 𝑇) + 𝑔(𝑋, 𝑇)𝑅𝑖𝑐(𝑌, 𝑍) .         (2.11) 

We consider the 𝑃1-curvature tensor in the index notation 

as [8] 

𝑃1𝑙𝑗𝑘ℎ
= 𝑅𝑙𝑗𝑘ℎ +

1

2(𝑛−1)
[𝑔𝑗𝑘𝑅𝑙ℎ − 𝑔𝑗ℎ𝑅𝑙𝑘 − 𝑔𝑙𝑘𝑅𝑗ℎ +

𝑔𝑙ℎ𝑅𝑗𝑘] .                                    (2.12) 

This can be written as 

𝑃1𝑗𝑘ℎ

𝑖 = 𝑅𝑗𝑘ℎ
𝑖 +

1

2(𝑛−1)
[𝑔𝑗𝑘𝑅ℎ

𝑖 − 𝑔𝑗ℎ𝑅𝑘
𝑖 − 𝛿𝑘

𝑖 𝑅𝑗ℎ +

𝛿ℎ
𝑖 𝑅𝑗𝑘] .                                           (2.13) 

In (𝑉4, 𝐹), and using (2.2) in equation (2.13), we get 

           𝑃1𝑗𝑘ℎ

𝑖 = 𝑊𝑗𝑘ℎ
𝑖 +

1

6
[𝛿ℎ

𝑖 𝑅𝑗𝑘 − 𝑔𝑗ℎ𝑅𝑘
𝑖  ] 

           −
1

3
[ 𝛿𝑘

𝑖 𝑅𝑗ℎ − 𝑔𝑗𝑘𝑅ℎ
𝑖 ]  .                                 (2.14)  

3. Expansion Curvatures Tensors in Finsler 

Space 

The expansion curvature tensor 𝑊𝑗𝑘ℎ
𝑖  is a geometric 

object introduced in Finsler geometry. 

It is a measure of the curvature of a Finsler manifold, 

which is a generalization of a Riemannian manifold. The 

expansion curvature tensor is closely related to the Weyl 

projective curvature tensor and the Cartan’s curvature 

tensor. It vanishes if and only if the Finsler manifold is 

flat. we introduced the generalized by Cartan’s covariant 

derivative for any tensor  𝑊𝑖𝑗𝑘
ℎ  was given by 

       𝑊𝑗𝑘ℎ|𝑚
𝑖 = 𝜆𝑚𝑊𝑗𝑘ℎ

𝑖 + 𝜇𝑚(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ)  .      (3.1) 

We can write (3.1) by the follows form 

       𝑊𝑗𝑘ℎ|𝑚
𝑖 = 𝜆𝑚𝑊𝑗𝑘ℎ

𝑖 + 𝜇𝑚(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ) 

       + 𝛾𝑚[𝑊ℎ
𝑖(0) − 𝑊𝑘

𝑖(0)]  . 

From (1.4b) the above equation can be written as 

      𝑊𝑗𝑘ℎ|𝑚
𝑖 = 𝜆𝑚𝑊𝑗𝑘ℎ

𝑖 + 𝜇𝑚(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ) 

       +𝛾𝑚[𝑊ℎ
𝑖𝐶𝑖𝑗𝑘𝑦𝑖 − 𝑊𝑘

𝑖𝐶𝑖𝑗ℎ𝑦𝑖] .                            (3.2) 

Using (1.3) in (3.2), we get 

       𝑊
(𝑗𝑘ℎ|𝑚)
𝑖 = 𝜆𝑚𝑊𝑗𝑘ℎ

𝑖 + 𝜇𝑚(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ) 

       +
1

4
 𝛾𝑚[𝑊ℎ

𝑖�̇�𝑘�̇�𝑖�̇�𝑗 𝐹
2𝑦𝑖 − 𝑊𝑘

𝑖�̇�ℎ�̇�𝑗�̇�𝑖𝐹
2𝑦𝑖].       (3.3) 

Applying (1.1f) on (3.3), we get 

      𝑊𝑗𝑘ℎ|𝑚
𝑖 = 𝜆𝑚𝑊𝑗𝑘ℎ

𝑖 + 𝜇𝑚(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ) 

       +
1

4
𝛾𝑚[𝑊ℎ

𝑖�̇�𝑘�̇�𝑗𝐹2 − 𝑊𝑘
𝑖�̇�ℎ�̇�𝑗𝐹2] . 

From (1.1b) the above equation can be written as 

       𝑊𝑗𝑘ℎ|𝑚
𝑖 = 𝜆𝑚𝑊𝑗𝑘ℎ

𝑖 + 𝜇𝑚(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ) 

       +
1

4
𝛾𝑚[𝑊ℎ

𝑖�̇�𝑘�̇�𝑗𝑦𝑗𝑦𝑗 − 𝑊𝑘
𝑖�̇�ℎ�̇�𝑗𝑦𝑗𝑦𝑗 ] .              (3.4)        

Applying (1.1f) again on (3.4), we get 

       𝑊𝑗𝑘ℎ|𝑚
𝑖 = 𝜆𝑚𝑊𝑗𝑘ℎ

𝑖 + 𝜇𝑚(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ) 

       +
1

4
𝛾𝑚[𝑊ℎ

𝑖�̇�𝑘𝑦𝑗 − 𝑊𝑘
𝑖�̇�ℎ𝑦𝑗] . 

From (1.1g), we have 

       𝑊𝑗𝑘ℎ|𝑚
𝑖 = 𝜆𝑚𝑊𝑗𝑘ℎ

𝑖 + 𝜇𝑚(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ) 
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       +
1

4
𝛾𝑚[𝑊ℎ

𝑖𝑔𝑗𝑘 − 𝑊𝑘
𝑖𝑔𝑗ℎ] . 

From the previous steps, we can conclude the following 

theorem 

Theorem 3.1. The expansion of (1.16) is given by (3.5). 

The dimensionality of many curvatures tensors operators 

will be extended in accordance with theorem 3.1. 

4. Investigate the Expansion by Identities 

Mathematical identities are equations that are always 

true, regardless of the values of the variables involved. 

They can be used to simplify expressions, solve 

equations, and prove theorems. We investigated the 

expansion of Cartan’s covariant derivative for any 

curvature tensor that was given in last equation in section 

3, i.e. 

       𝑊𝑗𝑘ℎ|𝑚
𝑖 = 𝜆𝑚𝑊𝑗𝑘ℎ

𝑖 + 𝜇𝑚(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ) 

       +
1

4
𝛾𝑚[𝑊ℎ

𝑖𝑔𝑗𝑘 − 𝑊𝑘
𝑖𝑔𝑗ℎ] .                                  (4.1) 

We suppose that (4.1) holds to investigate the following 

identities 

4-1.  Using Cartan’s covariant derivative, we derive the 

following expression for equation (2.2) 

       𝑅𝑗𝑘ℎ|𝑚
𝑖 = 𝑊𝑗𝑘ℎ|𝑚

𝑖 −
1

3
𝛾𝑚(𝛿𝑘

𝑖 𝑅𝑗ℎ − 𝑅ℎ
𝑖 𝑔𝑗𝑘)

|𝑚

 
  .  (4.2) 

From (1.15a), (1.15b), (4.1) and (4.2), we get 

       𝑅𝑗𝑘ℎ|𝑚
𝑖 = 𝜆𝑚𝑊𝑗𝑘ℎ

𝑖 + 𝜇𝑚(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ) 

       +
1

4
𝛾𝑚[𝑊ℎ

𝑖𝑔𝑗𝑘 − 𝑊𝑘
𝑖𝑔𝑗ℎ] −

1

3
𝜆𝑚(𝛿𝑘

𝑖 𝑅𝑗ℎ − 𝑅ℎ
𝑖 𝑔𝑗𝑘). 

This gives 

       𝑅𝑗𝑘ℎ|𝑚
𝑖 = 𝜆𝑚 [𝑊𝑗𝑘ℎ

𝑖 −
1

3
(𝛿𝑘

𝑖 𝑅𝑗ℎ − 𝑅ℎ
𝑖 𝑔𝑗𝑘)] 

   +𝜇𝑚(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ) +
1

4
𝛾𝑚[𝑊ℎ

𝑖𝑔𝑗𝑘 − 𝑊𝑘
𝑖𝑔𝑗ℎ] . (4.3) 

By using (2.2) in (4.3), we have 

       𝑅𝑗𝑘ℎ|𝑚
𝑖 = 𝜆𝑚𝑅𝑗𝑘ℎ

𝑖 + 𝜇𝑚(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ) 

       +
1

4
𝛾𝑚[𝑊ℎ

𝑖𝑔𝑗𝑘 − 𝑊𝑘
𝑖𝑔𝑗ℎ]  .                                 (4.4) 

From the previous steps, we can conclude the following 

theorem 

Theorem 4.1: The expansion derivative for Cartan of 

Riemannian curvature tensor 𝑅𝑗𝑘ℎ
𝑖  (2.2) is satisfies the 

equation (4.4). 

Transvecting condition to a higher dimensional space 

(4.4) by 𝑦𝑗, using the conditions (1.5b), (1.13b) and 

(1.1a), we get 

       𝐻𝑘ℎ|𝑚
𝑖 = 𝜆𝑚𝐻𝑘ℎ

𝑖 + 𝜇𝑚(𝛿ℎ
𝑖 𝑦𝑘 − 𝛿𝑘

𝑖 𝑦ℎ) 

 +
1

4
𝛾𝑚[𝑊ℎ

𝑖  𝑦𝑘 − 𝑊𝑘
𝑖  𝑦ℎ]  .                                   (4.5) 

Again, transvecting condition to a higher dimensional 

space (4.5) by  𝑦𝑘 , using the conditions (1.5b), (1.13j), 

(1.12a), (1,1b) and (1.1c), we get 

𝐻ℎ|𝑚
𝑖 = 𝜆𝑚𝐻ℎ

𝑖 + 𝜇𝑚(𝛿ℎ
𝑖 𝐹 

2− 𝑦 
𝑖𝑦ℎ) +

1

4
 𝛾𝑚𝑊ℎ

𝑖𝐹 
2 .  (4.6) 

Therefore, the proof of theorem is completed, we can say 

Theorem 4.2. In covariant derivative for Cartan’s of first 

order for torsion tensor 𝐻𝑘ℎ
𝑖  and deviation tensor  𝐻ℎ

𝑖   are 

given by (4.5) and (4.6). 

4-2. Using Cartan’s covariant derivative, we derive the 

following expression for equation (2.6) 

�̅�𝑗𝑘ℎ|𝑚
𝑖 = 𝑊𝑗𝑘ℎ|𝑚

𝑖 −
1

6
(𝛿ℎ

𝑖 𝑅𝑗𝑘 + 𝛿𝑘
𝑖 𝑅𝑗ℎ − 𝑔𝑗𝑘𝑅ℎ

𝑖 −

𝑔𝑗ℎ𝑅𝑘
𝑖 )

|𝑚

 
  .                                         (4.7) 

From (1.15a), (1.15b), (4.1) and (4.7), we get 

      �̅�𝑗𝑘ℎ|𝑚
𝑖 =  𝜆𝑚𝑊𝑗𝑘ℎ

𝑖 + 𝜇𝑚(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ) 

       +
1

4
𝛾𝑚[𝑊ℎ

𝑖𝑔𝑗𝑘 − 𝑊𝑘
𝑖𝑔𝑗ℎ] 

       −
1

6
𝜆𝑚(𝛿ℎ

𝑖 𝑅𝑗𝑘 + 𝛿𝑘
𝑖 𝑅𝑗ℎ − 𝑔𝑗𝑘𝑅ℎ

𝑖 − 𝑔𝑗ℎ𝑅𝑘
𝑖 ) . 

This can be written as 

 �̅�𝑗𝑘ℎ|𝑚
𝑖 = 𝜆𝑚 [𝑊𝑗𝑘ℎ

𝑖 −
1

6
(𝛿ℎ

𝑖 𝑅𝑗𝑘 + 𝛿𝑘
𝑖 𝑅𝑗ℎ − 𝑔𝑗𝑘𝑅ℎ

𝑖 −

𝑔𝑗ℎ𝑅𝑘
𝑖 )] + 𝜇𝑚(𝛿ℎ

𝑖 𝑔𝑗𝑘 − 𝛿𝑘
𝑖 𝑔𝑗ℎ) 

    +
1

4
𝛾𝑚[𝑊ℎ 

𝑖 𝑔𝑗𝑘 − 𝑊𝑘 
𝑖 𝑔𝑗ℎ]  .                                   (4.8) 

From (2.6) and (4.8), we have 

       �̅�𝑗𝑘ℎ|𝑚
𝑖 = 𝜆𝑚�̅�𝑗𝑘ℎ

𝑖 + 𝜇𝑚(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ) 

        +
1

4
𝛾𝑚[𝑊ℎ 

𝑖 𝑔𝑗𝑘 − 𝑊𝑘 
𝑖 𝑔𝑗ℎ] .                                (4.9) 

So, the proof of theorem is completed, we can say 

Theorem 4.3. The expansion derivative for Cartan’s of 

projective curvature tensor �̅�𝑗𝑘ℎ
𝑖  (2.6) is satisfies the 

equation (4.9). 

4-3. Using Cartan’s covariant derivative, we derive the 

following expression for equation (2.7b) 

    𝐶𝑗𝑘ℎ|𝑚
𝑖 = 𝑊𝑗𝑘ℎ|𝑚

𝑖 −
5

6
(𝛿𝑘

𝑖 𝑅𝑗ℎ − 𝑅ℎ
𝑖 𝑔𝑗𝑘)

|𝑚

 
 

    −
1

6
( 𝑅(𝛿ℎ

𝑖 𝑔𝑗𝑘 − 𝛿𝑘
𝑖 𝑔𝑗ℎ))

|𝑚
 

    + 
1

2
(𝛿ℎ 

𝑖 𝑅𝑗𝑘 − 𝑅𝑘 
𝑖 𝑔𝑗ℎ)

|𝑚

 
  .                                  (4.10) 

From (1.15a), (1.15b), (1.15d), (4.1) and (4.10), we get 

    𝐶𝑗𝑘ℎ|𝑚
𝑖 = 𝜆𝑚𝑊𝑗𝑘ℎ

𝑖 + 𝜇𝑚(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ) 

    +
1

4
𝛾𝑚[ 𝑊ℎ 

𝑖 𝑔𝑗𝑘 − 𝑊𝑘 
𝑖 𝑔𝑗ℎ ] +

1

2
𝜆𝑚(𝛿ℎ

𝑖 𝑅𝑗𝑘 − 𝑅𝑘
𝑖 𝑔𝑗ℎ) 

     −
5

6
𝜆𝑚(𝛿𝑘

𝑖 𝑅𝑗ℎ − 𝑅ℎ
𝑖 𝑔𝑗𝑘) −

1

6
𝜆𝑚𝑅(𝛿ℎ

𝑖 𝑔𝑗𝑘 − 𝛿𝑘
𝑖 𝑔𝑗ℎ) . 

Or, we can write as 
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 𝐶𝑗𝑘ℎ|𝑚
𝑖 = 𝜆𝑚 (𝑊𝑗𝑘ℎ

𝑖 −
5

6
 (𝛿𝑘

𝑖 𝑅𝑗ℎ − 𝑅ℎ
𝑖 𝑔𝑗𝑘) −

1

6
 𝑅(𝛿ℎ

𝑖 𝑔𝑗𝑘 − 𝛿𝑘
𝑖 𝑔𝑗ℎ) +

1

2
 (𝛿ℎ

𝑖 𝑅𝑗𝑘 − 𝑅𝑘
𝑖 𝑔𝑗ℎ))           

 + 𝜇𝑚(𝛿𝑘
ℎ𝑔𝑖𝑗 − 𝛿𝑗

ℎ𝑔𝑖𝑘) +
1

4
𝛾𝑚[𝑊ℎ

𝑖𝑔𝑗𝑘 − 𝑊𝑘
𝑖𝑔𝑗ℎ]. (4.11) 

By using (2.7b) in (4.11), we have 

     𝐶𝑗𝑘ℎ|𝑚
𝑖 = 𝜆𝑚𝐶𝑗𝑘ℎ

𝑖 + 𝜇𝑚(𝛿𝑘
ℎ𝑔𝑖𝑗 − 𝛿𝑗

ℎ𝑔𝑖𝑘) 

     +
1

4
𝛾𝑚[ 𝑊ℎ 

𝑖 𝑔𝑗𝑘 − 𝑊𝑘 
𝑖 𝑔𝑗ℎ]  .                               (4.12) 

In conclusion the proof of theorem is completed, we can 

determine 

Theorem 4.4. The expansion derivative for Cartan’s of 

Conformal curvature tensor  𝐶𝑖𝑗𝑘
ℎ  (2.7b) is satisfies the 

equation (4.12). 

4-4. Using Cartan’s covariant derivative, we derive the 

following expression for equation (2.8b) 

       𝐿𝑗𝑘ℎ|𝑚
𝑖 = 𝑊𝑗𝑘ℎ|𝑚

𝑖 +
1

6
(𝛿𝑘

𝑖 𝑅𝑗ℎ − 𝑅ℎ
𝑖 𝑔𝑗𝑘)

|𝑚

 
 

       −
1

2
(𝛿ℎ

𝑖 𝑅𝑗𝑘 − 𝑅𝑘
𝑖 𝑔𝑗ℎ)

|𝑚
  .                                 (4.13) 

From (1.15a), (1.15b), (4.1) and (4.13), we get 

       𝐿𝑗𝑘ℎ|𝑚
𝑖 = 𝜆𝑚𝑊𝑗𝑘ℎ

𝑖 + 𝜇𝑚(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ) 

       +
1

4
𝛾𝑚[𝑊ℎ

𝑖𝑔𝑗𝑘 − 𝑊𝑘
𝑖𝑔𝑗ℎ] 

       +
1

6
𝜆𝑚(𝛿𝑘

𝑖 𝑅𝑗ℎ − 𝑅ℎ
𝑖 𝑔𝑗𝑘) −

1

2
𝜆𝑚(𝛿ℎ

𝑖 𝑅𝑗𝑘 − 𝑅𝑘
𝑖 𝑔𝑗ℎ)   . 

Or can be written as 

 𝐿𝑗𝑘ℎ|𝑚
𝑖 = 𝜆𝑚 [𝑊𝑗𝑘ℎ

𝑖 +
1

6
  (𝛿𝑘

𝑖 𝑅𝑗ℎ − 𝑅ℎ
𝑖 𝑔𝑗𝑘) −

 
1

2
  (𝛿ℎ

𝑖 𝑅𝑗𝑘 − 𝑅𝑘
𝑖 𝑔𝑗ℎ)] + 𝜇𝑚(𝛿ℎ

𝑖 𝑔𝑗𝑘 − 𝛿𝑘
𝑖 𝑔𝑗ℎ) 

+
1

4
𝛾𝑚[𝑊ℎ

𝑖𝑔𝑗𝑘 − 𝑊𝑘
𝑖𝑔𝑗ℎ].                                        (4.14) 

From (2.8b) and (4.14), we get 

     𝐿𝑗𝑘ℎ|𝑚
𝑖 = 𝜆𝑚  𝐿𝑗𝑘ℎ

𝑖 +  𝜇𝑚(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ) 

       +
1

4
𝛾𝑚[𝑊ℎ

𝑖𝑔𝑗𝑘 − 𝑊𝑘
𝑖𝑔𝑗ℎ] .                                (4.15) 

Thus, the proof of theorem is completed, we get 

Theorem 4.5. The expansion derivative for Cartan of 

Conharmonic curvature tensor  𝐿𝑗𝑘ℎ
𝑖  (2.8b) is satisfies the 

equation (4.15). 

4-5. Using Cartan’s covariant derivative, we derive the 

following expression for equation (2.10) 

𝑀𝑗𝑘ℎ|𝑚
𝑖 = 𝑊𝑗𝑘ℎ|𝑚

𝑖 −
1

12
(𝑅(𝑔𝑗𝑘𝛿ℎ

𝑖 − 𝑔𝑗ℎ𝛿𝑘
𝑖 ))

|𝑚

 

 

       −
1

6
(𝛿𝑘

𝑖 𝑅𝑗ℎ − 𝑅ℎ
𝑖 𝑔𝑗𝑘  )

|𝑚

 
  .                                (4.16) 

From (1.15a), (1.15b), (1.15d), (4.1) and (4.16), we get 

     𝑀𝑗𝑘ℎ|𝑚
𝑖 = 𝜆𝑚𝑊𝑗𝑘ℎ

𝑖 + 𝜇𝑚(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ) 

   +
1

4
𝛾𝑚[𝑊ℎ

𝑖𝑔𝑗𝑘 − 𝑊𝑘
𝑖𝑔𝑗ℎ] −

1

12
𝜆𝑚𝑅(𝑔𝑗𝑘𝛿ℎ

𝑖 − 𝑔𝑗ℎ𝛿𝑘
𝑖 ) 

    − 
1

6
𝜆𝑚(𝛿𝑘

𝑖 𝑅𝑗ℎ − 𝑅ℎ
𝑖 𝑔𝑗𝑘)   . 

Or can be written as 

 𝑀𝑗𝑘ℎ|𝑚
𝑖 = 𝜆𝑚 [𝑊𝑗𝑘ℎ

𝑖 −
1

12
𝑅(𝑔𝑗𝑘𝛿ℎ

𝑖 − 𝑔𝑗ℎ𝛿𝑘
𝑖 ) −

1

6
(𝛿𝑘

𝑖 𝑅𝑗ℎ − 𝑅ℎ
𝑖 𝑔𝑗𝑘)] + 𝜇𝑚(𝛿ℎ

𝑖 𝑔𝑗𝑘 − 𝛿𝑘
𝑖 𝑔𝑗ℎ) 

+
1

4
𝛾𝑚[ 𝑊ℎ

𝑖𝑔𝑗𝑘 − 𝑊𝑘
𝑖𝑔𝑗ℎ ]  .                                    (4.17)                         

From (2.10) and (4.17), we have 

  𝑀𝑗𝑘ℎ|𝑚
𝑖 = 𝜆𝑚𝑀𝑗𝑘ℎ

𝑖 + 𝜇𝑚(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ) 

      +
1

4
𝛾𝑚[𝑊ℎ

𝑖𝑔𝑗𝑘 − 𝑊𝑘
𝑖𝑔𝑗ℎ] .                                 (4.18) 

In conclusion the proof of theorem is completed, we can 

determine 

Theorem 5.6. The expansion derivative for Cartan of 

Concircular curvature tensor  𝑀𝑗𝑘ℎ
𝑖  (2.10) is satisfies the 

equation (4.18). 

4-6. Using Cartan’s covariant derivative, we derive the 

following expression for equation (2.14) 

       𝑃1𝑗𝑘ℎ|𝑚
𝑖 = 𝑊𝑗𝑘ℎ|𝑚

𝑖 +
1

6
(𝛿ℎ

𝑖 𝑅𝑗𝑘 − 𝑔𝑗ℎ𝑅𝑘
𝑖  )

|𝑚

 
 

       −
1

3
(𝛿𝑘

𝑖 𝑅𝑗ℎ − 𝑔𝑗𝑘𝑅ℎ
𝑖  )

|𝑚

 
 .                                 (4.19) 

From (1.15a), (1.15b), (4.1) and (4.19), we get 

       𝑃1𝑗𝑘ℎ|𝑚
𝑖 =  𝜆𝑚𝑊𝑗𝑘ℎ

𝑖 + 𝜇𝑚(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ) 

       +
1

4
𝛾𝑚[ 𝑊ℎ

𝑖𝑔𝑗𝑘 − 𝑊𝑘
𝑖𝑔𝑗ℎ] +  

1

6
𝜆𝑚[𝛿ℎ

𝑖 𝑅𝑗𝑘 − 𝑔𝑗ℎ𝑅𝑘
𝑖  ] 

       −
1

3
𝜆𝑚[ 𝛿𝑘

𝑖 𝑅𝑗ℎ − 𝑔𝑗𝑘𝑅ℎ
𝑖 ] 

Or can be written as 

 𝑃1𝑗𝑘ℎ|𝑚
𝑖 = 𝜆𝑚 [𝑊𝑗𝑘ℎ

𝑖 +
1

6
 [𝛿ℎ

𝑖 𝑅𝑗𝑘 − 𝑔𝑗ℎ𝑅𝑘
𝑖  ] −

1

3
 [ 𝛿𝑘

𝑖 𝑅𝑗ℎ − 𝑔𝑗𝑘𝑅ℎ
𝑖 ]] + 𝜇𝑚(𝛿ℎ

𝑖 𝑔𝑗𝑘 − 𝛿𝑘
𝑖 𝑔𝑗ℎ) 

 +
1

4
𝛾𝑚[ 𝑊ℎ

𝑖𝑔𝑗𝑘 − 𝑊𝑘
𝑖𝑔𝑗ℎ] .                                     (4.20) 

By using (2.14) in (4.20), we have 

     𝑃1𝑗𝑘ℎ|𝑚
𝑖 = 𝜆𝑚𝑃1𝑗𝑘ℎ

𝑖 + 𝜇𝑚(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ) 

       +
1

4
𝛾𝑚[𝑊ℎ

𝑖𝑔𝑗𝑘 − 𝑊𝑘
𝑖𝑔𝑗ℎ]  .                               (4.21) 

The proof of theorem is completed, we conclude 

Theorem 5.7. The expansion derivative for Cartan of P1-

curvature tensor 𝑃1𝑗𝑘ℎ

𝑖  (2.14) is satisfies the equation 

(4.21). 
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Transvecting condition to a higher dimensional space 

(4.1) by 𝑦𝑗, using the conditions (1.2b), (2.3a) and (1.4b), 

we get 

       𝑊𝑘ℎ|𝑚
𝑖 = 𝜆𝑚𝑊𝑘ℎ

𝑖 + 𝜇𝑚(𝛿ℎ
𝑖 𝑦𝑘 − 𝛿𝑘

𝑖 𝑦ℎ) 

        +
1

4
𝛾𝑚[ 𝑊ℎ 

𝑖 𝑦𝑘 − 𝑊𝑘 
𝑖 𝑦ℎ  ]  .                              (4.22) 

Again, transvecting condition to a higher dimensional 

space (4.22) by  𝑦𝑘, using the conditions (1.5b), (1.11b), 

(1.12a), (1,1b) and (1.1c), we get 

       𝑊ℎ|𝑚
𝑖 = 𝜆𝑚𝑊ℎ

𝑖 + 𝜇𝑚(𝑦 
𝑖𝑦𝑘 − 𝛿𝑘

𝑖 𝐹 
2) 

       +
1

4
𝛾𝑚𝑊ℎ

𝑖  𝐹 
2 .                                                   (4.23) 

Therefore, the proof of theorem is completed, we can say 

Theorem 5.8. In covariant derivative for Cartan of first 

order for torsion tensor 𝑊𝑘ℎ
𝑖  and deviation tensor  𝑊ℎ

𝑖   are 

given by (4.22) and (4.23). 

Contracting the indices  𝑖 and  ℎ  in the equations (4.5) 

and (4.6), respectively and using (1.2a), (1.1a), (1.1b), 

(1.13k), (1.13t), and (1.12b), we get 

       𝐻𝑘|𝑚
 = 𝜆𝑚H𝑘

 + 𝜇𝑚(𝑛 − 1) 𝑦𝑘 −
1

4
𝛾𝑚𝑊𝑘

𝑖   ,   (4.24) 

and 

       𝐻|𝑚
 = 𝜆𝑚𝐻 + 𝜇𝑚(𝑛 − 1)𝐹 

2 .                         (4.25) 

The proof of theorem is completed, we conclude 

Theorem 5.9. In covariant derivative for Cartan of first 

order for vector 𝐻𝑘 and scalar 𝐻 are given by (4.24) and 

(4.25). 

5. Applications in Applied Mathematics and 

Theoretical Physics for the Research 

Paper 

The research paper delves into advanced mathematical 

topics such as Cartan’s covariant derivative, curvature 

tensors, and torsion tensors, which are central concepts 

in differential geometry, general relativity, and 

theoretical physics. Below, I'll provide specific examples 

of how these concepts are applied in various fields of 

applied mathematics and theoretical physics: 

5.1. Application in General Relativity (GR): 

In general relativity, the curvature of spacetime is 

described by the Riemann curvature tensor, which 

determines how the geometry of spacetime is influenced 

by the presence of mass and energy. The covariant 

derivative of the curvature tensor, as described in the 

paper, can be used to study the evolution of spacetime 

curvature in response to changing gravitational fields. 

Example: Consider the Einstein Field Equations: 

𝑅𝑘ℎ −
1

2
 𝑔𝑘ℎ  𝑅 =

8𝜋𝐺

𝐶4  𝑇𝑘ℎ  , where 𝑅𝑘ℎ is the Ricci 

curvature tensor, 𝑅 is the scalar curvature, 𝑔𝑘ℎ is the 

metric tensor, and 𝑇𝑘ℎ  is the stress-energy tensor. 

By investigating the expansion of the Cartan covariant 

derivative of the curvature tensor (as done in the paper), 

one can examine how gravitational waves, black holes, 

or exotic matter (such as dark energy) might affect the 

spacetime curvature. The identity expansions from the 

paper help simplify complex expressions for the 

curvature tensor in various curved spacetimes, making it 

easier to solve the Einstein field equations. 

5.2. Application in Higher-Dimensional Theories (e.g., 

String Theory): 

In theoretical physics, particularly in string theory, 

higher-dimensional spaces play a crucial role in the 

formulation of the fundamental forces. The covariant 

derivatives for torsion and curvature tensors are 

fundamental in higher-dimensional spaces, as seen in the 

paper’s expansion formulas. 

Example: In string theory, we often deal with spacetime 

manifolds with more than four dimensions. If we 

consider a spacetime with n-dimensions, the torsion 

tensor and the curvature tensor can become more 

complex due to the extra dimensions. 

The Riemann curvature tensor in n-dimensional space, 

for example, can be used to describe how the extra 

dimensions curve in the presence of different types of 

fields (gravitational, electromagnetic, etc.). Expanding 

the Cartan covariant derivative (as in equation (4.3) of 

the paper) allows physicists to study how these higher-

dimensional fields influence the geometry of spacetime. 

The identities in the paper can be applied to higher-

dimensional spaces by "transvecting" (i.e., applying 

transformations) to a higher-dimensional configuration, 

which is represented by the tensors Hkh|m
i  and Hh|m

i  in 

equations (4.5) and (4.6). This helps in analyzing the 

dynamics of strings and branes in higher-dimensional 

spaces. 

5.3. Application in Cosmology (Dark Energy and Dark 

Matter): 

In cosmology, dark energy and dark matter are 

fundamental components of the universe's evolution. The 

study of spacetime curvature and torsion tensors is 

essential to understanding how these mysterious 

components affect the geometry of the universe. 

Example: In the context of cosmological models, such as 

the Lambda-CDM model, the curvature tensors can 

describe the expansion and contraction of the universe 

under the influence of dark energy and dark matter. The 

expansion identities (such as equation (4.4) from the 

paper) help simplify the mathematical model of an 
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expanding universe, particularly when considering the 

interaction between gravitational fields and energy-

momentum tensors. 

These identities are also important when investigating 

the deviation tensor 𝐻ℎ
𝑖  , which measures the difference 

between the actual geometry of the universe and the 

predictions of a flat, homogeneous model. These 

quantities are key to understanding the accelerating 

expansion of the universe due to dark energy. 

5.4. Application in Fluid Dynamics (Curvature in 

Fluid Flow): 

In applied mathematics, especially in the study of fluid 

dynamics, the curvature tensor can describe the behavior 

of a fluid’s flow in curved space, which is important in 

the study of turbulent flow or fluid flow in non-Euclidean 

geometries. 

Example: In fluid dynamics, if a fluid is flowing through 

a curved medium (e.g., a pipe with a curved surface or a 

rotating fluid system), the curvature of the flow domain 

impacts the flow patterns. The paper’s work on 

expanding Cartan’s covariant derivative can be applied 

to model the shear stress and vorticity in such curved 

flow systems. 

By using the identities derived in the paper, such as those 

in equations (4.4) and (4.5), one can study the flow 

dynamics under complex boundary conditions, including 

how torsion and curvature influence the velocity and 

pressure distributions within the fluid. 

6. Conclusion 

In this study, we have introduced a novel decomposition 

scheme for curvature tensors in Finsler spaces. A 

promising avenue for future research would be to explore 

the applications of this decomposition in the context of 

Finslerian cosmology. By investigating the behavior of 

curvature tensors in cosmological models based on 

Finsler geometry, we could gain new insights into the 

large-scale structure of the universe and potentially 

develop new tests of general relativity. 

Possible Recommendations and Future 

Work 

Based on the findings of this study, several promising 

avenues for future research can be explored: 

1. The proposed decomposition scheme can be extended 

to other geometric structures beyond Finsler spaces, 

such as Randers spaces or Finslerian warped 

products. Investigating the applicability of this 

approach to more general geometric settings would 

provide deeper insights into the underlying 

mathematical structures. 

2. The developed framework can be applied to various 

physical theories, such as general relativity and 

cosmology. Exploring potential connections between 

the curvature properties of Finsler spaces and 

physical phenomena could lead to new insights into 

the nature of spacetime. 

3. Numerical simulations can be employed to visualize 

and analyze the behavior of curvature tensors under 

different conditions. This would provide a 

complementary approach to the theoretical analysis 

and could help to identify new geometric phenomena. 

4. The connections between Finsler geometry and other 

areas of mathematics, such as differential geometry, 

topology, and algebraic geometry, can be further 

explored. This could lead to the discovery of new 

mathematical structures and relationships. 

5. The decomposition of curvature tensors can be used 

to define new geometric invariants that are sensitive 

to the specific properties of Finsler spaces. These 

invariants could be used to classify Finsler spaces and 

to study their geometric properties in more detail. 
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 مقالة بحثية 

 المشتقات العليا لكارتان وتحليل موتر الانحناء في الفضاءات الفينسلرية: 

 رؤى في التطبيقات الرياضية والفيزيائية 

 2فهمي احمد مثنى السلال  و  ،،*1عادل محمد علي القشبري

 عدن، جامعة عدن، عدن، اليمن  -الرياضيات، كلية التربية سم ق 1
 fahmiassallald55@gmail.com؛ البريد الالكتروني: جامعة عدن، عدن، اليمن،  الضالع -التربية، كلية الرياضياتقسم  2

 a.alqashbari@ust.edu & adel.math.edu@aden-univ.net؛ البريد الالكتروني: عادل محمد علي القشبري* الباحث الممثلّ:  

 2025يونيو  30نشر في   / 2025يونيو   14قبل في:   /  2025يونيو  04 استلم في:

 المُلخّص 

لية تتناول هذه الورقة البحثية البنية المعقدة لموترات الانحناء ضمن نطاق هندسة فينسلر. ومن خلال توظيف مشتقات كارتان العليا، نقترح آ

ار  طجديدة لتحليل )تفكيك( موترات الانحناء. وتوفر هذه المقاربة المبتكرة فهماً أعمق للخصائص الهندسية للفضاءات الفينسلرية، كما تؤسس لإ

اء والالتواء نظري يمكن البناء عليه في الدراسات المستقبلية. وقد كشفت نتائجنا أن التحليل المقترح يعُد أداة فعالة في توضيح الروابط بين الانحن 

المعلومات الفينسلرية  والبنية المترية الأساسية. علاوة على ذلك، نظُهر قابلية تطبيق نتائجنا على عدد من فروع هندسة فينسلر، بما في ذلك هندسة  

 .وكونيات فينسلر

 .فضاء فينسلر، توسيع مشتقات كارتان التباينية، موتر الانحناء، الهويات، الخصائص الهندسية الكلمات المفتاحية:
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