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Abstract

This paper delves into the intricate structure of curvature tensors within the realm of Finsler geometry. By
harnessing the power of higher-order Cartan derivatives, we introduce a novel decomposition scheme for
curvature tensors. This innovative approach not only provides deeper insights into the geometric properties
of Finsler spaces but also establishes a foundational framework for further investigations. Our findings reveal
that the proposed decomposition is instrumental in unraveling the connections between curvature, torsion,
and the underlying metric structure. Moreover, we demonstrate the applicability of our results to various
subdomains of Finsler geometry, including Finsler information geometry and Finsler cosmology.
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1. Introduction

Finsler geometry, as a generalization of Riemannian
geometry, offers a flexible framework for modeling
diverse physical phenomena characterized by anisotropic
and position-dependent metrics. Central to the study of
Finsler geometry are curvature tensors, which
encapsulate the intrinsic curvature properties of the
underlying space. While significant progress has been
made in understanding curvature tensors in Riemannian
geometry, their counterparts in Finsler geometry exhibit
a richer and more complex structure. Traditional
approaches to analyzing curvature tensors in Finsler
geometry often rely on the concept of Cartan connection.
However, these methods can become cumbersome when
dealing with higher-order geometric quantities. In this
paper, we propose a novel approach that leverages the
power of higher-order Cartan derivatives to
systematically decompose curvature tensors.

This decomposition not only simplifies the analysis of
curvature but also reveals new connections between
curvature, torsion, and the metric structure.

The study of curvature tensors and recurrent structures in
Finsler geometry and relativistic space-times has

attracted considerable attention due to its significance in
both mathematical theory and physical applications. The
foundational work by [23] laid the groundwork for
modern developments in Finsler geometry, introducing
essential geometric structures and curvature concepts.

Subsequent efforts have focused on the refinement and
generalization of curvature tensors. Notably, [2] and [3]
investigated the properties of the w-curvature tensor and
its implications in relativistic contexts. [1] extended this
line of inquiry by analyzing the w*-curvature tensor on
relativistic space-times, offering new insights into its
geometric and physical interpretations.

In the context of Finsler geometry, a substantial body of
work has been contributed by Al-Qashbari and
collaborators. Their investigations have spanned a wide
range of topics, including M-projective curvature tensors
[4], higher-order generalized recurrent structures [6], [7],
and the decomposition of generalized curvature tensors
[5] and [9]. These studies have made significant strides
in classifying and understanding complex recurrent
phenomena in Finsler manifolds through the use of
Cartan and Berwald derivatives.
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Further contributions have examined special curvature
structures such as the conharmonic, Weyl, and R-
projective tensors, particularly in relation to their
behavior under various covariant and Lie derivatives
[10], [11], [22], [13], [14], [15], [17] and [18]. These
efforts have helped elucidate the deeper algebraic and
differential properties of curvature tensors in generalized
fifth recurrent Finsler spaces (GBK-5RFn), as well as
their role in broader geometric frameworks.

The work of [20] and [21], has further contextualized the
behavior of higher-order recurrent Finsler spaces,
emphasizing the role of Berwald-type structures and
systematizing various special cases of interest. Similarly,
the investigations by [22] into generalized H-recurrent
spaces have provided a comparative foundation for the
study of trirecurrent and BK-recurrent geometries, as
also explored in later works [16], and [19].

Collectively, these studies demonstrate a growing
research interest in extending classical geometric
concepts through higher-order and generalized structures
in Finsler spaces. The present work builds upon this
foundation by further analyzing [insert specific topic of
your paper here, e.g., concircular motions using Cartan’s
fourth curvature tensor in the Berwald sense], thereby
contributing new insights into the ongoing development
of Finsler geometry and its recurrent frameworks.

Two vectors y; and y‘ meet the following conditions

a) Yizgijyjl
b) y;y'=F?,
c) &y =y"

d) g6 =g

e) g*6i=g’t |
f) 9;y/=1 and
9) 51( Yi=9jk - (1.1)

The quantities g;; and g¥ are covariant constant with
respect to h-covariant derivative by

. 1, if i=k
o glk = §k = ’ ’
a) 9ij 9 61 {0 , if i+ k .

b) g¢’*,=0 and
¢) Giym =0. (1.2)
Tensor C;jy is known as (h)hv-torsion tensor defined by

l.]k a Jjk = aiajak F? ' (13)
The (v)hv -torsion tensor C/: and tensor Cijx are given by

a) Cky —C'ikyk=0 )

b) Cijy'=Cijy’ =Cipy*=0

C) gjkCl-jk = Ci and
d)  g/*Cyn = Cfj,. (1.4)

The vector y! and metric function F are vanished
identically for Cartan’s covariant derivative.

a) F,=0 and

b) yi,=0. (1.5)

Cartan [7] deduced the covariant derivatives of an
arbitrary vector field X* with respect to x* which given
by

X =0 X + XTCl, . (1.6)
and

X =0 X' - (0, X") G} +X"T5, @7
where the function I3 is defined by

=T —Car TRY®.

The functions I';% and G, are connected by
Gy =Tg y® ,where 9; ——],

P .
i = 6_3/1 y = ale.

In the context of Finsler geometry, equations (1.6) and
(1.7) define two distinct forms of covariant
differentiation: the v-covariant differentiation, also
referred to as Cartan's first kind covariant derivative, and
the h-covariant differentiation, known as Cartan's second
kind covariant derivative. Accordingly, the notations
XY, and X|ik represent the v-covariant and h-covariant

derivatives of a vector field X*, respectively.

In this study, we present a rigorous mathematical
exposition of key tensorial structures, namely the
generalized curvature tensor ]l}(h, the torsion tensor
/i » and the deviation tensor W‘ These tensors play a
fundamental role in differential geometry and theoretical
physics, especially in the characterization of the
curvature and torsional behavior of differentiable
manifolds.

Precise definitions of these tensors are given as follows:
i

Cn = Hig + L Hyygg + 22 3,H
ikh = Hjgn +m k] T = 0jHkn)

(n+1)

+ Gty (n H + Hyj + y"0;Hyy)
—(nf—ifl) (nHjx + He; +y"0iHiy) . (L.8)
W};c = H}'ik (n+1) H[jk]
+2{( 2 ls ' (n Hyy — y"Hy,) } and (1.9)
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1
(n+1)

W}'iz H]?_Hé‘]'i_ (0.H] —o;H) y*,
respectively. (1.10)
These tensors satisfy the following intrinsic identities:
a) Wﬁch yl = Wléh )
b) Weny* =Wy, |

¢) Wi =Wy ,

d)  gir M/ﬁch = W‘rjkh )
e) Wﬁch == Wﬁzk and
) Wi+ Wi + Wi =0. (1.12)

Additionally, under specific conditions, the deviation
tensor W}’ satisfies:

a) Wiy =0,
by wi=0 |,
) geWi =W, |
d) g Wy = and

e) Wyyk=0. (1.12)

Notably, the tensor ]-ikh is skew-symmetric with respect
to the indices k and h. The discussion is further extended
to Cartan’s third curvature tensor R}kh , the Ricci tensor
Rj, , the curvature vector Hy, and the scalar curvature

H. These entities are central in the geometric
interpretation of manifold curvature. Through their
analytical interrelations and algebraic properties, this
work contributes to a deeper understanding of geometric
structures in differential geometry and their implications
in physical theories.

8) Rjn =i + (T ) Gi + Gl (Gl —
Gt Gn ) + T D" — e/,

b) Rjny’ =Hin

¢) Ryy =Hg ,

d Rxy* =R

&) Ri=R,

f)  gir R;kh = Rrjkh )

9) R}ékh =- R}éhk )

h) h) gij}kh =Rj

i) R}ki = Rjg

) Hiy'=H =@n-1DH |,

k) Hi,y*=H. and

) H =H, . (1.13)
Cartan’s covariant derivative, when applied to
the tensors Rj, and 8k, yields the following
relations:

a.) R]k|m = AmR]k and
b) Sm =0. (1.14)

Additionally, the covariant derivative with respect to |m
satisfies:

a) (8K Rij)jm = AmOF Rij
b) (91 RE)im = Am 9ij RE

Moreover, Cartan’s covariant derivatives of the tensor
fields T/, , T} and T} with respect to x™ are given by:
a) Tjikh|m = /1mTjikh ,
b) Tieym = AmTj  and
) Tjim = AmT} . (1.16)

The structure of the present work is organized as follows.
After the introductory Section 1, which includes
foundational concepts and notations, Section 2 explores
the algebraic and geometric relations between the Weyl
projective curvature tensor and several other curvature
tensors. Section 3 is devoted to the expansion of Cartan’s
covariant derivative applied to general curvature tensors.
Finally, Section 4 investigates a set of tensorial identities
derived in Section 2 using the expansions developed
earlier.

2. Preliminaries

In Finsler geometry, a central theme is the complex
interplay between various types of curvature tensors.
These interrelations are frequently captured through
concise and elegant mathematical identities. This paper
emphasizes the study of the structural connections
between the Weyl projective curvature tensor and other
fundamental curvature tensors, aiming to shed light on
their underlying geometric significance.

2.1. The Riemanniian Curvature Tensor R]"-kh

The Riemann curvature tensor is a central construct in
differential geometry, serving as a measure of the
intrinsic curvature of a Riemannian manifold. It
quantifies how the manifold's geometry deviates locally
from that of flat Euclidean space, making it a vital
invariant in understanding geometric structures. More
precisely, the Riemann tensor captures the non-
commutativity of second-order covariant derivatives and
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thus encapsulates the failure of local flatness in curved
spaces.

A Riemannian manifold is said to be flat if and only if its
Riemann curvature tensor vanishes identically, implying
that the manifold is locally isometric to Euclidean space.
Importantly, this tensor is not limited to Riemannian
geometry alone; it extends naturally to pseudo-
Riemannian manifolds and more generally to manifolds
endowed with an affine connection.

In the broader scope of mathematical physics, the
Riemann curvature tensor plays a foundational role in the
general theory of relativity, where it describes the
curvature of spacetime resulting from mass-energy
distributions. Its components are directly involved in the
formulation of Einstein's field equations.

Closely associated with the Riemann curvature tensor is
the Weyl projective curvature tensor, which generalizes
the notion of projective and conharmonic curvature
tensors.

Definition 2.1. Weyl projective curvature tensor in terms
of Riemannian curvature tensor R}'kh is defined as [12]
and [21].

) . ) . .
Wikn = Rjxn + (n—_l)(&lchh —RLgjk) - (2.1)
In (V,, F), we have
. o .
Riyn = Wikn — 3 (6kRin — Rhgji) - (2.2)

2.2. Projective Curvature Tensor W}kh

The W -projective curvature tensor is a geometric object
of significant interest in differential geometry. It has been
investigated in various geometric contexts, including
Riemannian  geometry, Ké&hler geometry, and
cosmology, due to its ability to reveal subtle geometric
and physical properties.

Furthermore, the concept of an M-projective curvature
tensor was introduced by Pokhariyal and Mishra (1970),
providing a more generalized framework for curvature
analysis in Riemannian and related geometries. The
definition and properties of this tensor have been
explored extensively and will be discussed in the
following sections of this work.

W(X,Y,Z,T) = R(X,Y,Z,T)

1

T 2(n-1)
+9(Y,Z2)S(X,T) — g(X,T)S(Y,2)] . (2.3)
Where: WX,Y,Z,T) = gW(X,Y)Z,T) and
R(X,Y,Z,T) =g(R(X,Y)Z,T) . (2.4)

R is the Riemann curvature tensor, S is the Ricci tensor,
g is the metric tensor, n is the dimension of the manifold.

The W-projective curvature tensor has a number of
interesting properties. For example, it is invariant under
conformal transformations. This means that it is the same
for two metrics that are conformally equivalent. The W-
projective curvature tensor also vanishes if and only if
the manifold is Ricci-flat.

The W -projective curvature tensor has been used to study
a variety of geometric problems. For example, it has been
used to classify Riemannian manifolds, to study the
geometry of Kahler manifolds, and to develop new
models of gravity.

The local coordinates expression of equation (2.3) as
follows

- 1
Wijkn = Ryjin — 20-1) [Rjkglh —Rigjn + gjxRin —
glkth] . (2.5)
Assuming n = 4 and using (2.2) in equation (2.5) and
contracting with g%, the M-projective curvature tensor is
given by

7l — i
Wikn = Wikn

1 . . .
-3 (8iRjx + 8LR;n — gjiRE — gjnRY) - (2.6)

2.3. Conformal Curvature Tensor C]"-kh

The conformal curvature tensor, also known as the Weyl
conformal curvature tensor, is a geometric object
introduced in differential geometry. It is a measure of the
curvature of spacetime or, more generally, a pseudo-
Riemannian manifold. Like the Riemann curvature
tensor, the Weyl tensor expresses the tidal force that a
body feels when moving along a geodesic. The Weyl
tensor differs from the Riemann curvature tensor in that
it does not convey information on how the volume of the
body changes, but rather only how the shape of the body
is distorted by the tidal force.

Definition 2.2. The Conformal curvature tensor C,-’}k
expressed as follows

Cien = Rixn _2(5}(th — 8iRjic + Ricgjn — Rh9ijx)
—~R(849j1 — Skgjn) - (2.72)
Using (2.2) in equation (2.7a), we get
Cjikh = VVJlkh - z (alichh - Rlilgjk)
—~R(Shgji — Skgjn) + 5 (OhRji — Riegjn) - (2.7)
2.4. Conharmonic Curvature Tensor Ljy,

The conharmonic curvature tensor is a geometric object
introduced in differential geometry. It generalizes the
projective curvature tensor and the conformal curvature
tensor. It has been studied in a variety of contexts,
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including Riemannian geometry, Kéhler geometry, and
cosmology.

Definition 2.3. For V, the Conharmonic curvature tensor
Ly, defined as [10] and [18]

L;.'kh = R}kh

—(9jeR} + SiRj — 6LRy — ginRL) . (2.89)
Using (2.2) in equation (2.8a), we get

L;.'kh = VVijh + %(&R}'h - R;lgik)

— > (5hRj — Rigpm) - (2.80)

2.5. Concircular Curvature Tensor M]‘ikh

The concircular curvature tensor is a geometric object
introduced in differential geometry. It is a measure of the
curvature of spacetime or, more generally, a pseudo-
Riemannian manifold. It is closely related to the
conformal curvature tensor (also known as the Weyl
curvature tensor) and the projective curvature tensor. The
concircular curvature tensor vanishes if and only if the
manifold is concircularly flat.

Definition 2.4. The Concircular curvature tensor My,
for V, is defined as [3]

) ) 1 . )
Mjlkh = R}kh - ER(gjkailz - 9jh5zl<) . (2.9)
Using (2.2) in equation (2.9), we get
Mjlkh = VVijh - ER(gjk5il1 - gjh6llc)

—= (kR — Rigj)- (2.10)

2.6. P{-Curvature Tensor

The P1-curvature tensor is a geometric object introduced
in differential geometry. It is a measure of the curvature
of spacetime or, more generally, a pseudo-Riemannian
manifold. It is closely related to the Ricci curvature
tensor and the scalar curvature. The Pi-curvature tensor
vanishes if and only if the manifold is Ricci-flat and has
constant scalar curvature. The tensor P;(X,Y,Z,T) has
been defined as

Pl(X; Y;Z; T) = R(X, Y’Z’T)
1
2(n-1)

—g(X, 2)Ric(Y,T) + g(X, T)Ric(Y,Z).  (2.11)

+

[g(Y,Z2)Ric(X,T) — g(Y,T)Ric(X,Z)

We consider the P, -curvature tensor in the index notation
as [8]

1
Py = Rijin + 2-1) [9xRin = gjnRuxc — GueRin +
IinRir] - (2.12)

This can be written as

. . 1 . . .
SiRik] - (2.13)
In (V,, F), and using (2.2) in equation (2.13), we get
. . 1 . .
Piin = Wien + 2 [8hRjx — gjnRic ]
Te ,
-3 [ 8iRjn — gijh] : (2.14)
3. Expansion Curvatures Tensors in Finsler
Space

The expansion curvature tensor Wj’}m iS a geometric
object introduced in Finsler geometry.

It is a measure of the curvature of a Finsler manifold,
which is a generalization of a Riemannian manifold. The
expansion curvature tensor is closely related to the Weyl
projective curvature tensor and the Cartan’s curvature
tensor. It vanishes if and only if the Finsler manifold is
flat. we introduced the generalized by Cartan’s covariant
derivative for any tensor Wl-;‘k was given by

Wienim = mWjien + i (8hgjk = Sk9jn) - (B.1)
We can write (3.1) by the follows form
Vl/}'l;ch|m = AmVI/}'l;ch + Hm(drilgjk - SIigjh)
+ Y [Wi (0) = Wi ()] -
From (1.4b) the above equation can be written as
j§<h|m = /1ijl}<h + Hm(afilgjk - 51igjh)
Y [WECijky' — WiCijny'] .- (3.2)
Using (1.3) in (3.2), we get
W(i]'kmm) = /1ijl}ch + Hm((siilgjk - 511;9171)
+2 Y[ Wi0k0,0; F?y' — W(0,0;0,F*y'].  (3.3)
Applying (1.1f) on (3.3), we get
Vle;chlm = /1ij§ch + (819 — 6k9jn)
1 e e
From (1.1b) the above equation can be written as
Vl/}'l}(mm = AmM/jl;ch + Hm(csrizgjk - 5Iigjh)
+2 Y[ Wi0k0;y7 v — Widnd;y7y; | - (34)
Applying (1.1f) again on (3.4), we get
Vl/jl;chlm = 2nWiien + (84951 — 649jn)
1 . .
+ZVm[Whlak)Ij — Widny;] .
From (1.1g), we have

fienim = 2mWiien + i (819 k= 61gjn)
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+iYm[Wff9jk —Wigpn] .

From the previous steps, we can conclude the following
theorem

Theorem 3.1. The expansion of (1.16) is given by (3.5).
The dimensionality of many curvatures tensors operators
will be extended in accordance with theorem 3.1.

4. Investigate the Expansion by Identities

Mathematical identities are equations that are always
true, regardless of the values of the variables involved.
They can be used to simplify expressions, solve
equations, and prove theorems. We investigated the
expansion of Cartan’s covariant derivative for any
curvature tensor that was given in last equation in section
3, i.e.

V|/j§ch|m = AmVle;ch + :um((siilgjk - 8Iigjh)
1 ) )
+;Vm[Wﬁgjk —Wigjn] - 4.1)

We suppose that (4.1) holds to investigate the following
identities

4-1. Using Cartan’s covariant derivative, we derive the
following expression for equation (2.2)

e = Wiknm — %Vm(&ith - Rflgjk)lm . (4.2)
From (1.15a), (1.15h), (4.1) and (4.2), we get
R;kh|m = Aijl}ch + um (849jx — 6k9jn)
+iVm[Wf§gjk — Wigjn] - %Am(5lith — Rhgjx)-
This gives
Richm = Am [ ien = % (8iRjn — Ragjk)]
+itm (819 = Skgjn) + 5 Ym[Wikg e = Wigjn] - (4.3)
By using (2.2) in (4.3), we have
R}kmm = AmR}kh + llm(5fizgjk - 51ic9jh)
+%Vm[Wf£gjk —Wigin] - (4.4)

From the previous steps, we can conclude the following
theorem

Theorem 4.1: The expansion derivative for Cartan of
Riemannian curvature tensor R}kh (2.2) is satisfies the
equation (4.4).

Transvecting condition to a higher dimensional space
(4.4) by y’, using the conditions (1.5b), (1.13b) and
(1.1a), we get

Hll;th|m = AmHlfch + :um(‘siilyk - Slith)

L .
+ 2 VWi yie = Wi ] - (4.5)

Again, transvecting condition to a higher dimensional
space (4.5) by y*, using the conditions (1.5b), (1.13]),
(1.12a), (1,1b) and (1.1c), we get

. . . _ 1 .
Him = AmHpy + i (ShF? = y'yn) + 5 YmWaF? . (4.6)
Therefore, the proof of theorem is completed, we can say

Theorem 4.2. In covariant derivative for Cartan’s of first
order for torsion tensor Hj,, and deviation tensor H}, are
given by (4.5) and (4.6).

4-2. Using Cartan’s covariant derivative, we derive the
following expression for equation (2.6)

Wiienim = Wiicnim — % (8iRjx + SiRin — gjicRi, —
gthlic)Im : (4.7)
From (1.15a), (1.15b), (4.1) and (4.7), we get
lekmm = AmVI/}'l;ch + Hm(‘sfilgjk - 5ligjh)
+%Vm[W}£gjk —Wigjn]
Am(8iRjxc + 85 Rin — gjxRh — gjnRL) -

This can be written as

1
6

le}cmm =An [ jl}ch - %(&iszk + 84 Rin — 9jRh —
gth;ic)] + 1 (8195 — 6kgjn)
+ Y[ Wi G = Wi gpn] - (4.8)
From (2.6) and (4.8), we have
Vl—/jl;chlm = AmVT/jl;ch + l‘m(‘siilgjk - 5Iicgjh)
+ iVm[er ik —Wigin]. (4.9)
So, the proof of theorem is completed, we can say

Theorem 4.3. The expansion derivative for Cartan’s of
projective curvature tensor _j‘}ch (2.6) is satisfies the
equation (4.9).

4-3. Using Cartan’s covariant derivative, we derive the
following expression for equation (2.7b)

. . s, .
enim = Wiknpm — g(‘gllchh - R;lgjk)”n
L . .
—3 ( R(819jx — 5Il<gjh))|m
1, .
+ = (8h Rix — Ri gjh)lm . (4.10)
From (1.15a), (1.15b), (1.15d), (4.1) and (4.10), we get
enim = A Wiken + (85951 — 5k jn)
1 ; i 1 ; i
+ 2 Y| Wa Gk = Wit gjn | + 5 Am (8rRjx — Ricgjn)
s . . 1 . .
—glm(&lchh —Rhgj) — glmR(&Lngk —8kgjn) -

Or, we can write as
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o = 2 (Wien = (85Ri = Rigye) =
L R(5hgp — 8kgm) + (OhRy — Rigpn))
+ um (6895 — 8 guc) + iym[wiigjk — Wigjn]. (4.11)
By using (2.7b) in (4.11), we have
jikh|m = Aijikh + :um(é‘llclgij - 5jhgik)
+ =Y Wi gjic — Wi gjn] - (4.12)

In conclusion the proof of theorem is completed, we can
determine

Theorem 4.4. The expansion derivative for Cartan’s of
Conformal curvature tensor Ci’}k (2.7Db) is satisfies the
equation (4.12).

4-4. Using Cartan’s covariant derivative, we derive the
following expression for equation (2.8b)

i’kh|m = Vl/j§<h|m + %(&ichh - R;lgjk)|m
—~(84Ry — RY i) - (4.13)
From (1.15a), (1.15b), (4.1) and (4.13), we get
Lﬁ'kh|m = /’lijéch + Hm(aiilgjk - 51igjh)
+iym[Wi£gjk —Wigjn]
+ = A (8kRjn = RhGjic) = 5 Am (Oh Ry — Rkgjn) -
Or can be written as
]i'khlm =m [Wfkh +% (5Iichh - R;'zgjk) -
% (6hRj — Rlicgjh)] + tm(64h9jk — 6kjn)
+ <Yl Wigj — Wigpn]. (4.14)
From (2.8b) and (4.14), we get
Lj’khlm = Am L]i'kh + (649 — 61Gjn)
+%Vm[Wf£gjk —Wigpn] .- (4.15)
Thus, the proof of theorem is completed, we get

Theorem 4.5. The expansion derivative for Cartan of
Conharmonic curvature tensor Lj'-kh (2.8D) is satisfies the
equation (4.15).

4-5. Using Cartan’s covariant derivative, we derive the
following expression for equation (2.10)

. . 1 . .
Mjlkhlm = I/lekh|m - E (R(g]'k(s;l - gjhsli))lm

From (1.15a), (1.15b), (1.15d), (4.1) and (4.16), we get

Minim = 2mWjin + (849 k. — 61.95n)
1 i i 1 i i
+ 2 YmWidje = Wigjn] = 35 4mR(9,x6% — 9jnk)
1 ) .
- g/lm(fsllchn —Rhgjx) -
Or can be written as
. . 1 . .
Mjlkh|m = Am [ijlkh - ER(gjkaflL - Hjh&i) -
1 ) . )
P (8iRjm — R;ngk)] + i (819k — 6LGjn)
1 . .
+2 V| Wigji = Wigin] - (4.17)
From (2.10) and (4.17), we have
Mjikh|m = AmMjikh + .u-m(afilgjk - 6ligjh)
1 . .
+1Vm [(Wigi — Wigin] - (4.18)

In conclusion the proof of theorem is completed, we can
determine

Theorem 5.6. The expansion derivative for Cartan of
Concircular curvature tensor M}kh (2.10) is satisfies the
equation (4.18).

4-6. Using Cartan’s covariant derivative, we derive the
following expression for equation (2.14)

: . 1, .
1ljkh|m = ]'lkhlm + E(afllek — gjnRi )|m
1, )
-3 (8iR;n — gk R} )|m . (4.19)
From (1.15a), (1.15b), (4.1) and (4.19), we get
1 . . 1 . .
+1Vm[ Widjx — Wign] + glm[&lszk — 9jnRi |
1 . .
- glm[ 8kRin — gR})
Or can be written as
i [ L+ [SiRy — gimRL] —
jkhlm m jkh 6 hfjk jht'k
1 . . .
3 [ 8kRs — gij;l]:l + tm(8h9jk — 6k jn)
1 . .
+Zym[ Wigix — Wign] - (4.20)
By using (2.14) in (4.20), we have
1 . .
+- YmWi g — Wigjn] - (4.21)
The proof of theorem is completed, we conclude

Theorem 5.7. The expansion derivative for Cartan of Ps-
curvature tensor P{jkh (2.14) is satisfies the equation

(4.21).
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Transvecting condition to a higher dimensional space
(4.1) by y/, using the conditions (1.2b), (2.3a) and (1.4b),
we get

Wkih|m = AnWin + tim (8Lyie — S£yn)
1 . .
+ 2V Wa yie = Wikyn ] - (4.22)

Again, transvecting condition to a higher dimensional
space (4.22) by y*, using the conditions (1.5b), (1.11b),
(1.12a), (1,1b) and (1.1c), we get

Witim = Wit + i (y'yic — 8LF?)
+ 2y Wi F2. (4.23)
Therefore, the proof of theorem is completed, we can say

Theorem 5.8. In covariant derivative for Cartan of first
order for torsion tensor W}, and deviation tensor W} are
given by (4.22) and (4.23).

Contracting the indices i and h in the equations (4.5)
and (4.6), respectively and using (1.2a), (1.1a), (1.1b),
(1.13K), (1.13t), and (1.12b), we get

Hyjm = AmHy + U — 1) yp — iykai , (4.24)
and

Him = AmH + py(n — 1)F?. (4.25)
The proof of theorem is completed, we conclude

Theorem 5.9. In covariant derivative for Cartan of first
order for vector H,, and scalar H are given by (4.24) and
(4.25).

5. Applications in Applied Mathematics and
Theoretical Physics for the Research
Paper

The research paper delves into advanced mathematical
topics such as Cartan’s covariant derivative, curvature
tensors, and torsion tensors, which are central concepts
in differential geometry, general relativity, and
theoretical physics. Below, I'll provide specific examples
of how these concepts are applied in various fields of
applied mathematics and theoretical physics:

5.1. Application in General Relativity (GR):

In general relativity, the curvature of spacetime is
described by the Riemann curvature tensor, which
determines how the geometry of spacetime is influenced
by the presence of mass and energy. The covariant
derivative of the curvature tensor, as described in the
paper, can be used to study the evolution of spacetime
curvature in response to changing gravitational fields.

Example: Consider the Einstein Field Equations:

1 81G . ..
Rkh - E gkh R = % Tkh y Where Rkh IS the RICCI
curvature tensor, R is the scalar curvature, g, is the

metric tensor, and Ty, is the stress-energy tensor.

By investigating the expansion of the Cartan covariant
derivative of the curvature tensor (as done in the paper),
one can examine how gravitational waves, black holes,
or exotic matter (such as dark energy) might affect the
spacetime curvature. The identity expansions from the
paper help simplify complex expressions for the
curvature tensor in various curved spacetimes, making it
easier to solve the Einstein field equations.

5.2. Application in Higher-Dimensional Theories (e.g.,
String Theory):

In theoretical physics, particularly in string theory,
higher-dimensional spaces play a crucial role in the
formulation of the fundamental forces. The covariant
derivatives for torsion and curvature tensors are
fundamental in higher-dimensional spaces, as seen in the
paper’s expansion formulas.

Example: In string theory, we often deal with spacetime
manifolds with more than four dimensions. If we
consider a spacetime with n-dimensions, the torsion
tensor and the curvature tensor can become more
complex due to the extra dimensions.

The Riemann curvature tensor in n-dimensional space,
for example, can be used to describe how the extra
dimensions curve in the presence of different types of
fields (gravitational, electromagnetic, etc.). Expanding
the Cartan covariant derivative (as in equation (4.3) of
the paper) allows physicists to study how these higher-
dimensional fields influence the geometry of spacetime.
The identities in the paper can be applied to higher-
dimensional spaces by "transvecting" (i.e., applying
transformations) to a higher-dimensional configuration,
which is represented by the tensors Hyy, , and Hy,, in
equations (4.5) and (4.6). This helps in analyzing the
dynamics of strings and branes in higher-dimensional
spaces.

5.3. Application in Cosmology (Dark Energy and Dark
Matter):

In cosmology, dark energy and dark matter are
fundamental components of the universe's evolution. The
study of spacetime curvature and torsion tensors is
essential to understanding how these mysterious
components affect the geometry of the universe.

Example: In the context of cosmological models, such as
the Lambda-CDM model, the curvature tensors can
describe the expansion and contraction of the universe
under the influence of dark energy and dark matter. The
expansion identities (such as equation (4.4) from the
paper) help simplify the mathematical model of an
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expanding universe, particularly when considering the
interaction between gravitational fields and energy-
momentum tensors.

These identities are also important when investigating
the deviation tensor H}: , which measures the difference
between the actual geometry of the universe and the
predictions of a flat, homogeneous model. These
quantities are key to understanding the accelerating
expansion of the universe due to dark energy.

5.4. Application in Fluid Dynamics (Curvature in
Fluid Flow):

In applied mathematics, especially in the study of fluid
dynamics, the curvature tensor can describe the behavior
of a fluid’s flow in curved space, which is important in
the study of turbulent flow or fluid flow in non-Euclidean
geometries.

Example: In fluid dynamics, if a fluid is flowing through
a curved medium (e.g., a pipe with a curved surface or a
rotating fluid system), the curvature of the flow domain
impacts the flow patterns. The paper’s work on
expanding Cartan’s covariant derivative can be applied
to model the shear stress and vorticity in such curved
flow systems.

By using the identities derived in the paper, such as those
in equations (4.4) and (4.5), one can study the flow
dynamics under complex boundary conditions, including
how torsion and curvature influence the velocity and
pressure distributions within the fluid.

6. Conclusion

In this study, we have introduced a novel decomposition
scheme for curvature tensors in Finsler spaces. A
promising avenue for future research would be to explore
the applications of this decomposition in the context of
Finslerian cosmology. By investigating the behavior of
curvature tensors in cosmological models based on
Finsler geometry, we could gain new insights into the
large-scale structure of the universe and potentially
develop new tests of general relativity.

Possible Recommendations and Future
Work

Based on the findings of this study, several promising
avenues for future research can be explored:

1. The proposed decomposition scheme can be extended
to other geometric structures beyond Finsler spaces,
such as Randers spaces or Finslerian warped
products. Investigating the applicability of this
approach to more general geometric settings would
provide deeper insights into the underlying
mathematical structures.

2. The developed framework can be applied to various
physical theories, such as general relativity and
cosmology. Exploring potential connections between
the curvature properties of Finsler spaces and
physical phenomena could lead to new insights into
the nature of spacetime.

3. Numerical simulations can be employed to visualize
and analyze the behavior of curvature tensors under
different conditions. This would provide a
complementary approach to the theoretical analysis
and could help to identify new geometric phenomena.

4. The connections between Finsler geometry and other
areas of mathematics, such as differential geometry,
topology, and algebraic geometry, can be further
explored. This could lead to the discovery of new
mathematical structures and relationships.

5. The decomposition of curvature tensors can be used
to define new geometric invariants that are sensitive
to the specific properties of Finsler spaces. These
invariants could be used to classify Finsler spaces and
to study their geometric properties in more detail.
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